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In the case of a shared nothing system, the database could/be/replicated on every:
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SYSTEM ARCHITECTURE
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SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk.

Nodes only communicate with each

other via network.
— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

Each node can't view the memory or disk of any other node in the cluster, and ‘they *3
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SAARED NOTHING EXAMPLE
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So ID from 101 to 150 down here and from, what was it before? |
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Then to this question over here, | update the catalog services.

Shared disk



SHARED DISK

Nodes access a single logical disk via
an interconnect, but each have their

OWN private memories.
— Scale execution layer independently from 7
the storage layer. Distributed File:Systems | .Y
— Nodes can still use direct attached storage Object Srores}
as a slower/larger cache. '
— This architecture facilitates data lakes
and serverless systems.
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How does the DBMS ensure correctness?

How do we divide the database across resources?
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HOMUGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes

— Every node in the cluster can perform the same set of
tasks (albeit on potentially different partitions of data).

— Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes

— Nodes are assigned specific tasks.

— Can allow a single physical node to host multiple "virtual"
node types for dedicated tasks.
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And so what I've shown so far are more or less homogeneous nodes where every nodefink==s
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DATA TRANSPARENCY

Applications should not be required to know
where data is physically located in a distributed
DBMS.

— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid
excessively "expensive" data movement.
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#5845 X (Partitioning/Sharding)

UATABASE PARTITIONING

Split database across multiple resources:
— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).
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it's shared nothing, because, again, we have to physically divide'it up ac"r'6§§'_-7"_.:_

Navie table partitioning



NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions
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Ideal Query:
SELECT * FROM tablel
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And then in my ideal scenario of any query that just looks at only one of those

Vertical Partitioning
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VERTICAL PARTITIONING

Split a table's attributes into separate CREATE TABLE foo (
Zec attrl INT,
paI’UUOHS. attr2 INT,
Must store tuple information to attr3 INT,
reconstruct the original record. )_attr4 BRI
Partition #1 : Partition #2
Tuple#i attri attr2 attr3 E Tuple#l attr4
Tuple#2 attri attr2 attr3 Tuple#2 attr4
Tuple#3 attri attr2 attr3 Tuple#3 attris
Tuple#4 attrl attr2 attr3 : Tuple#d attr
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Horizontal Partitioning

RORKIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on
some partitioning key and scheme.

— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing
— Ranges
— Predicates
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RUOKIZONTAL PARTITIONING

Partitioning Key Table Partitions
~ 0\ hash(a)%4 = P2

///%W hash(b)%4 = P4

°:;:§ hash(c)%4 = P3
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PO TR T hash(a)4 = P2

105 (e XYY |2022-11~29| hash(e)%4 = P1
Ideal Query:
SELECT * FROM table
WHERE partitionKey = ?
|5 il

ROKIZONTAL PARTITIONING

[ Partitioning Key ITabIe Partitions

[101 [a  [xxx |2022-11-29| hash(a)%4= P2
[102 |b  |xxv [2022-11-28| hash(b)%4 = P4
[103 [c  [xvZ |2022-11-29| hash(c)%4 = P3
[104 [d  [xvx |2022-11-27| hash(d)%4=P2

[105 e  [xvy [2022-11-29] hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey =

hashZ? XFET R aSFEEEEN DR, HEAXERR
SEERKEXMBERLTERE



HORIZONTAL PARTITIONING

[Partmomng Key ITabIe Partitions
i [101 [a  [xxx [2022-11-29| hash(a)%5 = P4 o
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[102 [b  [xxy [2022-11-28| hash(b)%5 = P3

[103 |c  [xvz [2022-11-29| hash(c)%5 = P5

[104 |d  [xvx |2022-11-27| hash(d)%5 = P1

[105 [e  [xvY [2022-11-29] hash(e)%5 = P3

>
Ideal Query: ';
SELECT * FROM table v
WHERE partitionKey = ?
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And that sucks because that's going to move data from basically reshuffles’in

Consistent hashing
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CONSISTENT HASHING
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to send over here, and | don't need to move any other data at any other partition: ':_—5 i
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CONSISTENT HASHING
/—hash(keyl)

Replication Factor = 3

O Couchbase
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¥ cassandra
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The original idea was developed at MIT in 20005*

CONSISTENT HASHING

Replication Factor = 3
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partitions along that range, and I'll make sure | write the data there?
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Logical Partitioning
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LOGICAL PARTITIONING
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then anybody's reading any data and then you're fetching from shared dlsk over and™

LOGICAL PARTITIONING

Noce i Storage !

: b

L]

Q_
||

—

Application
Server

S .
T s N U m*htaﬁﬁﬁlmrLiwmt
R, FEEANEE, (BESTRCEEETIIE

But by doing this local partitioning, vou're essentia pinning the data here on



PHYSICAL PARTITIONING

Node £ =
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you know, where the data actually physically is located onf{the"nodes:

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.
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SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.
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need some way to, again, coordinate the execution of that transaction.
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.
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Most distributed databases are going to use a hybrid approach\whereiit's going tolbe™ —_—
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.
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cop, but since it's slow to do decentralized concurrency control, they're gonna elect"'



TRANSACTION COORDINATION

If our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a

temporary coordinator. 4 A P
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TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.

Originally developed in the 1970-80s to provide

txns between terminals and mainframe databases.
— Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA

B TPt

a centralized approach using what is called a TP monitor.




CENTRALIZED COORDINATOR

Coordinator .
Lock Request Partitions
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distributed database.

Lock Request

Application
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locks on that data, gets back an acknowledgement to the application*server.




CENTRALIZED COORDINATOR
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CENTRALIZED COORDINATOR

Coordinator

Commit Request | Partitions

Ap%a ellf\? et I[Oﬂ | Safe to commit? |

Application
Server

"
"

TRANSARC®

Zhea @AM Herl S
REE TR AR TRA

So as | said, there's a bunch of old systems that are still predicated or still’'use
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CENTRALIZED COORDINATOR

Partitions

Safe to commit?
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DECENTRALIZED COORDINATOR

Partitions
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How we decided to go to there versus another one, again, depends on what's in the®™
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DECENTRALIZED COORDINATOR
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as the leader node for this transaction, and then maybe it should create a request t°-2i
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OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.
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OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.
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FeDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.

— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).

FELERATED DATABASE EXAMPLE

Back-end DBMSs
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And then they get results back on the middleware, and I put it all together.



FEDERATED DATABASE EXAMPLE

< Back-end DBMSs
=% e a Y4 N
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DiSTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.
— Many of the same protocols from single-node DBMSs
can be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.
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CONCLUSION

We have barely scratched the surface on
distributed database systems...

[t is hard to get this right.
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Again, the main takeaway from all this should be that this is all very, very hard to
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