SR EEERERSintro

>

.mmShared A hoed SharedMMJ
Everything Nothing Disk

[ET T —— -fj

In the case of a shared nothing system, the database could/be/replicated on every:

« Shared memoryER ATt BAE, WE—ME—HERARIEL; FETREHETLETZR
eSS

SYSTEM ARCHITECTURE

e
Everything Nothing

. hiNeeh EE*
wmjﬂﬁrwﬁﬂﬁ‘ %Wﬂ

Shared notinng
RE#EFEDREEDXEFRETR; AIUDAEN, @I Exchaget@FrFRIBHITHRITHERH#ITIE

£4

10N

SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk.

Nodes only communicate with each

other via network.
— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

Each node can't view the memory or disk of any other node in the cluster, and ‘they *3

SHAHARED NOTHING EXAMPLE

|
P1+ID:1-150
J

Application

Server Node]
ol S

£2CMU-DB

SAARED NOTHING EXAMPLE

Catalog
Meta-Data (

CEr

Application
Server

Node

J S S S —

0 &
lol& Z B EI’J,BIE‘H' AEEE"?

So ID from 101 to 150 down here and from, what was it before? |

AR
ZZE
73
T <]
Application
Server

*J T 1Lt &b 1Y 8] &R

Node

1

P1+ID:1-100

J

Node

]

P3+>ID:101-200

Node

E

, REM T BRES

Then to this question over here, | update the catalog services.

Shared disk

SHARED DISK

Nodes access a single logical disk via
an interconnect, but each have their

OWN private memories.
— Scale execution layer independently from 7
the storage layer. Distributed File:Systems | .Y
— Nodes can still use direct attached storage Object Srores}
as a slower/larger cache. '
— This architecture facilitates data lakes
and serverless systems.

ZEEN SR ER QLS
TLME.LﬂB?I‘EJTE EA ﬁ

HETRERT BRAE, HETRELUMENXE, F=fmdb

SHARED DISK EXAMPLE

Catalog
| Page ABC

Meta-Data

Update 101

[

Node

| 4

Application
Server

[A)iER

DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How does the DBMS ensure correctness?

How do we divide the database across resources?

25 i S5 S Epdl] — ElaalEa e Eeeids
wmig, MW T‘ﬁﬂi’b‘ﬁ’]m ?zﬂ]ﬁi‘,%ﬁﬁﬂﬂsﬁ DXEET)T e ﬂ

B AREE IS AR P

BT R EREPEINTRER LURIEERRENGES,; MRENTREN, ERMERS— T RE
USRIRT m L& BT

SITR: SIHARSRATRNES; TUI— MBS SRES MENTS (—HMBE)

HOMUGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes

— Every node in the cluster can perform the same set of
tasks (albeit on potentially different partitions of data).

— Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes

— Nodes are assigned specific tasks.

— Can allow a single physical node to host multiple "virtual"
node types for dedicated tasks.

) EIRE)

DR AVIEE R AR BRSNS S TS

And so what I've shown so far are more or less homogeneous nodes where every nodefink==s

il

AR %R P aEk e &8 B AV SRS B FF 35

DATA TRANSPARENCY

Applications should not be required to know
where data is physically located in a distributed
DBMS.

— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid
excessively "expensive" data movement.

1080P BiF &S

#5845 X (Partitioning/Sharding)

UATABASE PARTITIONING

Split database across multiple resources:
— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

SRMIEE, Eh BXEE, RS enea

it's shared nothing, because, again, we have to physically divide'it up ac"r'6§§'_-7"_.:_

Navie table partitioning

NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

rTabIeld‘ g
N
o
e
i

-
Table2

-—

Ideal Query:
SELECT * FROM tablel

)
Jrscwon e e T R N AEe R 1
K*&E&méﬂ X4 2 0] LAY

And then in my ideal scenario of any query that just looks at only one of those

Vertical Partitioning
KMFITFME, REKNAELRNEERROX

VERTICAL PARTITIONING

Split a table's attributes into separate CREATE TABLE foo (
Zec attrl INT,
paI’UUOHS. attr2 INT,
Must store tuple information to attr3 INT,
reconstruct the original record.)_attr4 BRI
Partition #1 : Partition #2
Tuple#i attri attr2 attr3 E Tuple#l attr4
Tuple#2 attri attr2 attr3 Tuple#2 attr4
Tuple#3 attri attr2 attr3 Tuple#3 attris
Tuple#4 attrl attr2 attr3 : Tuple#d attr

*m-ﬁ% MTuﬁ#m @m um“ &2 B2 e S S R
**************** T RAT ‘ E}:"ﬁﬂ'ﬂ“ﬁ“ﬂtﬂ

- - 0: 080P Ei&

Horizontal Partitioning

RORKIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on
some partitioning key and scheme.

— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing
— Ranges
— Predicates

EFRE—HIERN D XAVKE

RUOKIZONTAL PARTITIONING

Partitioning Key Table Partitions
~ 0\ hash(a)%4 = P2

///%W hash(b)%4 = P4

°:;:§ hash(c)%4 = P3

2

‘e
$4 44
b
L
T a
'"
‘4
e
I:D
0'0
.0
.

........

PO TR T hash(a)4 = P2

105 (e XYY |2022-11~29| hash(e)%4 = P1
Ideal Query:
SELECT * FROM table
WHERE partitionKey = ?
|5 il

ROKIZONTAL PARTITIONING

[Partitioning Key ITabIe Partitions

[101 [a [xxx |2022-11-29| hash(a)%4= P2
[102 |b |xxv [2022-11-28| hash(b)%4 = P4
[103 [c [xvZ |2022-11-29| hash(c)%4 = P3
[104 [d [xvx |2022-11-27| hash(d)%4=P2

[105 e [xvy [2022-11-29] hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey =

hashZ? XFET R aSFEEEEN DR, HEAXERR
SEERKEXMBERLTERE

HORIZONTAL PARTITIONING

[Partmomng Key ITabIe Partitions
i [101 [a [xxx [2022-11-29| hash(a)%5 = P4 o

U p1 J
e

e
\ p3 !/

[102 [b [xxy [2022-11-28| hash(b)%5 = P3

[103 |c [xvz [2022-11-29| hash(c)%5 = P5

[104 |d [xvx |2022-11-27| hash(d)%5 = P1

[105 [e [xvY [2022-11-29] hash(e)%5 = P3

>
Ideal Query: ';
SELECT * FROM table v
WHERE partitionKey = ?

SClRlEaiEe BSs R S E AN
AR EEFZEBENEIREERG

And that sucks because that's going to move data from basically reshuffles’in

Consistent hashing

HIMET R, RMNIAFERIRET R LRSIEDEA T =B

CONSISTENT HASHING
1,0

S

If hash(key)=P4

S S¢

New Partition . P4

22CMU-DB

e BEzsfrse PR - BRI o R AT a6 MP4+ ,
XEEF P2, P3WMMEHEHEIXITR, ﬁ'ﬁﬁ%%‘?“f&@ﬁ‘{ﬂj‘:\ﬁ s

to send over here, and | don't need to move any other data at any other partition: ':_—5 i

i

X EMreplicationSLfr_E R EIF LG EIBRE HIZIAEIBRVIE T KM replication factor - 1M = E

CONSISTENT HASHING
/—hash(keyl)

Replication Factor = 3

O Couchbase

<EROSPIKE

¥ cassandra

sriak

SCYLLA

£2CMU-DB

EHAAEE 27 21 Y] i AR 18 T 2 Fn 12

The original idea was developed at MIT in 20005*

CONSISTENT HASHING

Replication Factor = 3

sow. FEile GNESS D SHEE A\ EdE A“EHJJ

Zagyjem]|

REZERRNT—IEMN R, HBRESRESARE.

partitions along that range, and I'll make sure | write the data there?
o~ — N

Logical Partitioning
FEELSX, MAREYMIELSK, share diskZEid

LOGICAL PARTITIONING

| Id=1 |
i Storage I

K
K

Id=1
Get 1d=3 =
Get Id=2 [1d=2

-
(=R
Il
B

Application
Server

Ak N St I IR b st EBAEH?)Q’T
w;ERnSHEHT%‘BAEEM,\;T&’E%MER LXHEELZFE 5 R =

then anybody's reading any data and then you're fetching from shared dlsk over and™

LOGICAL PARTITIONING

Noce i Storage !

: b

L]

Q_
||

—

Application
Server

S .
T s N U m*htaﬁﬁﬁlmrLiwmt
R, FEEANEE, (BESTRCEEETIIE

But by doing this local partitioning, vou're essentia pinning the data here on

PHYSICAL PARTITIONING

Node £ =

083

o

Application
Server Node i

o8

X AR 58 ESIRET & L SLIRY R AL BN e

you know, where the data actually physically is located onf{the"nodes:

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

-
e

4

* %mnj A

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

B1E, N %tﬁﬁﬁﬁ#&iﬂ&ﬁﬁmu-mﬁ

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

@#é 3

MURNEES g%ﬁﬁﬁ%wﬂu$ﬂm¢ﬁrf>

need some way to, again, coordinate the execution of that transaction.

Ao, BREATERAFLAME, EEtleaderTRKTLHNMEE

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

s e e I Vo, R A s
hiigs) . B —QEHWMﬁﬁ*ﬁwﬁﬁﬁ%hﬁE—-

Most distributed databases are going to use a hybrid approach\whereiit's going tolbe™ —_—

ol

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

2t BRER s o (85 SE SR eH A BR) SRE 7 S A A R Lol (s ES i gt
H— 1M ASE, ENEEXKBIIEEZEE, BVRESE, SRIAE M

cop, but since it's slow to do decentralized concurrency control, they're gonna elect"'

TRANSACTION COORDINATION

If our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a

temporary coordinator. 4 A P
-DB \ -l+ ’ !
wos. EREE e e MR, = = 5t {0 o

M AT SRS, R AR B IRE RIS, ,
H 'l ” 1:04:56 / 1:2'[:2'1@ G;Cj) can take aqagpﬁﬁ ﬁ% ‘F‘ﬁ m y Q____T)

PHUASFSVIESLRE
gz

TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.

Originally developed in the 1970-80s to provide

txns between terminals and mainframe databases.
— Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA

B TPt

a centralized approach using what is called a TP monitor.

CENTRALIZED COORDINATOR

Coordinator .
Lock Request Partitions

LMhﬁlehﬁﬁﬁﬂﬁ‘

distributed database.

Lock Request

Application

ESliG

R s D3R =] 43
axﬂm’%%ﬂ%ﬂ’]&, J:LIEI—AEﬁIAQ D%E‘FEER‘#’

locks on that data, gets back an acknowledgement to the application*server.

CENTRALIZED COORDINATOR

a P1
Coordinator
- Partitions

AR

ZZER

o

Application |
Server

el

S EATT D) A2
E%{f%?&iﬁ] mﬁﬁﬁﬁmﬁ‘ﬂ 1S,

-
EF’ ElgREES

= R

CENTRALIZED COORDINATOR

Coordinator

Commit Request | Partitions

Ap%a ellf\? et I[Oﬂ | Safe to commit? |

Application
Server

"
"

TRANSARC®

Zhea @AM Herl S
REE TR AR TRA

So as | said, there's a bunch of old systems that are still predicated or still’'use

EE IR TEER—EREGEE

CENTRALIZED COORDINATOR

Partitions

Safe to commit?

aueMa|ppIN

AR B -
IZmm_— . e
oo - ©
LI/E0
Application [P1>1D:1-100 @]
Server [P2+ID:101-200 | v

[P3+1D:201-300 @]
[P451D:301-400 @]

{8iX

EFiME

DECENTRALIZED COORDINATOR

Partitions
=
Begin Request
A %g 2 gJ
ZZaR
s
Application f)
Server \ p3

S IR e AN E SRt) 1 17 |
BXaiE, RTFREEPHNASRS

How we decided to go to there versus another one, again, depends on what's in the®™
- B T

DECENTRALIZED COORDINATOR

W [eader Node

AR

Iz

@ Query Request
Application ‘

Server

Partitions

o m}.
cov eI EE S iSSP = T R ER =) AR b R e

»
HEENMHZIOGST RRE: ‘B, REERS v

8 &

as the leader node for this transaction, and then maybe it should create a request t°-2i
i~ R

DECENTRALIZED COORDINATOR

W [eader Node | Partitions

Commit Request
A
ZZZl

ZZa —
(i . [Safe to commit?]
Application T
Server e

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.

B e 2 i BBl 48] & l_:‘|:E|g~. ‘ S gﬁ
Eﬁ‘#‘aiﬁ%—’\fﬁﬁ B ﬂﬂﬁ*ﬁ%}*%@ﬁﬁ

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.

EXFRER I 2
BT ARNMIEE, BRRNKIEEE, TESHRE;
BRUGA BHEIERIE a4

TEBRSHNRAER

FeDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.

— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).

FELERATED DATABASE EXAMPLE

Back-end DBMSs

S
Query Requests & [T8)
5 N
- M DB
5 MySQUC 0 ongo
=~
L \ J\\ J

Application
Server

SSUBWA~

N
o8 W)

fefe, MMM PEEFREGER, BB XEERESE KT,

And then they get results back on the middleware, and I put it all together.

FEDERATED DATABASE EXAMPLE

< Back-end DBMSs
=% e a Y4 N
Query Regqusts % Connectors ™

AR S 7 E— 0 MongoDB

Iz o RIEI S

Iz o

A T/IE]

Application
Server

‘.‘I’

XEH—

D H RIS
HIRE HIF S BB SRR A R

DiSTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.
— Many of the same protocols from single-node DBMSs
can be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.

/= >

2% 2PL

Application
Server

Server

DISTRIBUTED 2PL

DISTRIBUTED 2PL

————

Waits-For Graph

N S R -

ZﬁuﬁiE’JﬁB# ‘IE' = ‘?{

Application
Server

Server

, E'H%ﬁ‘,ﬂ]

#ﬁﬂ?%@%

CONCLUSION

We have barely scratched the surface on
distributed database systems...

[t is hard to get this right.

I p————— g -

Again, the main takeaway from all this should be that this is all very, very hard to

NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples

Pl
'S

