2% ,OLAP DB

a8 ALTD
B=JlfA

BiIFURCATED ENVIRONMENT

| 2 1 sy e O e lJl
Hﬁ’?‘i‘tﬂﬁiﬁfﬂﬂﬁufﬁﬂdﬁ EEG *El’]*%xk

databases, transform it in some way to clean things up, toj put Pinto a.uniformes—=

BiFURCATED ENVIRONMENT

4 Informatica H
Y

‘&\ Fivetran

talend Qlik@

dbt /f}? Airbyte

OLTP Databases OLAP '
b R () BRI 2= B ey W e i B3 2l ?E@:F% ==S 3 !

MR ESIELR ERESIRCENSHEGTHN. | o
in<i -"k_'": : |
process actually really occurs inside the data warehouse itself. = -

N AREFERIREITEOLTP DB, RERERESRIBCHAREOLAPARSIH; FELITHEEL, EN
AR AR RS RINIE R —1F.

A NBEEA RERZFRS, I ARRSUEERSERRIEREUHRAIR

DcCiSION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

Mmﬁﬁﬁfﬁ%WEMWﬁ$hﬂﬁ@¢o

They all pretty much mean the same thing, that you're trying tefextract’ new-knowlee

I OLAPZXIE E R MR R

Star schema (subset of snowflake)

STAR SCHEMA

PRODUCT _DIM CUSTOMER_DIM
CATEGORY_NAME 1D

CATEGORY_DESC FIRST_NAME

SRODLCT CODE \SALES_FACT i

PRODUCT _NAME EMAIL

PRODUCT_DESC ??EEUE;——FK ZIP_CODE

LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM
PRICE
COUNTRY YEAR
STATE_CODE UANTITY DAY_OF_YEAR
STATE_NAME / o \ MONTH_NU

ZIP_CODE MONTH_NA|
GETY

it I
It —
"‘..-:' AT

ENEN. TRHRITERREMEEEREFMEFRENGER; FUAR—BEH T RN TAHNRN, =M
WAURIEEFPRA XA TTH,

2 b=y INERL A

Snowflake schema

CAT_LOOKUP SNOWFLAKE SCHEMA
CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC
CUSTOMER_DIM
PRODUCT_DIM =
CATEGORY_FK SALES_FACT FIRST_NAME
LAST_NAME
PRODUCT NAME “~JPRODUCT_FK " wart
PRODUCT_DESC TIME_FK ZIP_CODE
LOCATION_FK
LOCATION_DIM CUSTOMER_FK TIME_DIM
COUNTRY YEAR
STATE_FK DAY_OF_YEAR
ZIP_CODE Y~ PRICE _~| MONTH_FK
CITY DAY_OF _MONTH

QUANTITY
STATE_LOOKUP ONTH 100
STATE_ID
STATE_CODE 4

B Lot M E U 2 2 51 (S
MR, A — M LSS 0.

my products so that now | have a separate categor I@0‘k<u p table.

REEE ™~ mAYER | RFBRIT—REZIR RN AT

ATEGORY_ID

CAT_LOOKUP SNOWFLAKE SCHEMA

- CUSTOMER_DIM
PRODUCT_DIM -
C FK SALES FACT
N . PRODUCT_FK
TIME_FK

, LOCATION_FK

LOCATION_DIM CUSTOMER_FK
< PRICE | MONTH_FK

DAY_OF _MONTH

QUANTITY ‘

= CMU-DB

Star VS. Snowflake schema

STAK VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

sttt RehfEAstarfyiR LT, —RRfEMAsnowflake

Problem setup

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server

INsES ITLmEﬁ

vy mﬁ$ﬁﬁﬂ%mﬁjﬁWﬁm%R

nodes in such a way that we don't have any false p05|t|vesor false negativesss.

WATIEZIR(E, 1LP2\P3\PAIBEIRAR AIXLAPL, BHiEHITjoin, ERXHESTHR—ET AMNE
g, RETDHIBME, AR

Agenda

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

E’J%*EIJ_I‘H‘E'IE LA;!:EE)UEE};'&‘I’E

We're going to talk about the execution models you could h‘ave for a distributed=

PHEAMIETEARHIFhashaHiERE, BEAZhashiEiE; AZHSHRABIEEES SR AhashiEE,
RAEZEHERT, #ESHhasho X

SN EIRIT

DISTRIiBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS

is roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting

DISTRiIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

== N SES 'Jslﬁ]vl'tu

| 5 o o= .
ibﬂ]ﬂ[]ﬂzxﬂ}lf ’_‘i‘“‘i‘ 1’E1"§Fﬁ EI’J"*SHE‘? |

==

Next question is, for a given query plan, how are we going to getithe data.we:needito=

A2 . FHitBESINFEEREFEEW?
o HEITR, FRARKRE,;, BERELAXIEFRTR

BENHLZHE

[¢]

dnj

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query
— Bring the data to the node that is executing a query that
needs it for processing.
— This is necessary when there is no compute resources
available where database files are located. .
LN

PUSH QUERY TO DATA

Node 1

P15R.1id:1-100
ﬁ—@ﬂ P1+S.id:1-100

)
AR
Za RIXS
2 IDs [101,200]
P

Application

Server Node) _
P2»R.1id: 101

SELECT * FROM R JOIN S
ON R.id = S.id

-200

= ° “TEH/J\FE S

MEHE AR 'ﬁﬁmréﬂﬁzumﬁz

So instead of the top node telling the bottom node, send mefal'l the data.you:haves= &

PULL DATA TO QUERY

IP1+ID:1-100

|
ﬁ‘% l Page ABC

SELECT * FROM R JOIN S
ON R.1d = S.1id

AR
ZZER o
. . IDs [101,200] W
Application ‘ 3

Server
of

IP2+ID:101-200|

PULL DATA TO QUERY

[P1+ID:1-100 |

SELECT * FROM R JOIN S
ON R.id = S.id

AR

IZZER RS

ZZR IDs [101,200] | Result: R > S
Application |

Server " Node

[P25>ID: 101-200|

SMU-DB

=

nnnnnnn

OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results
that are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

o MImiRIREXEIRVEIEH & 7 EbufferpoolHh

Query Fault Tolerance
JIFRIB)ZE RIGHIIRER

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail

during query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution
to allow it to recover if nodes fail.

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.1id

RS |Result:R[><]S|

Application

* hadoop=RAXMERNG, BITENERBRNELE, BRELAERENFAESFIERENE
1; 1BEmap reduceIiE RNFIENHART %, ?2”[']»&1?5; MEELRTH

o Presto/Trino@ W HEMEFE LHITOMEWNESNERLE

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.id

g
2
Application E

Server =
!

AR s T - ORE- 1 755

I\.
™

o AR REBINER, #Mﬁﬁ,ﬁﬂ*%%mﬁl

then the other node can just retrieve that result and pick up_fw here iT_t;lg_f;L—f.o.ﬁtﬁ
L} E

=R 1Iha gl
FEHRFFAERIT AL, BTN RIS (MKEN. TREERRIBNIET) ; FEXLEsy
fERRNEENSY

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

gSli, ER DB2 FHEN dBE

RIPHIE E NN 2 B EIE,

So doing some kind of micro benchmarking like DB2 does |s'~t-__h1_.g. t’i@ﬁt w.a'y-to-g@.w

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.
— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that
use this approach.

Rz ,.“Z 5] E“

H' A1.=.,._.\, LHEH'E{IJ'PG%%?HI]E’Jﬁ?ﬁ‘tﬁfﬁﬂ?ﬂﬁlﬂij

different nodes to tell them to do work on behalf of our d|str|'bu|ted_query7 =

9\

FARNY

PREERISQL

o FERVEINFEZNsql, BRANKSMUEEREITY; ST RECSEERNEHENYET
pdl

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

y \ 4

SELECT * FROM R JOIN S SELECT * FROM R JOIN S SELECT * FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300

id:1-100 id:101-200

VRG]
E;JHEF‘JZE ,..\J:f?EL‘HZE\E'J**“ &

And the idea here is, again, maybe the centralized view doesn~t*have thietcomplete

Umon the output of T FRAGMENTS

each join to produce

l final result. OM R JOIN S
ON\Xid = S.id

v

SELECT = FROM R JOIN S SELECT * FROM R JOIN S SELECT = FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300

@ﬁiﬂ@
%DE!IDHA# #TE-FJ %%E*Pﬁf ‘éfi#_%

And then, again, there'll be some kind of centralized coordmaterthatknows how:sto=—==

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

DiISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we

discussed earlier in the semester.
— Need to avoid false negatives due to missing tuples when
running local join on each node.

\/\ —=h LY _5
751t %ﬁ?ﬁﬁmﬁ%%ﬁ?**@ ; %B% :
= \
And | would say everything I'm going to talk about here is},again#the_same:fo =

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT x FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.

id:1-100 id:101-204

| Replicatea

= e o 0 N R b B 2 75 {3 1)

BIEMRR, AEDARBERLER, DXINRT ik 20

i &
So this is the best case scenario because | did no data transfér:in order to.computep==ssl™

e —KREBIMHR/LWER: BEFETRT RN S %, EASIT TR LEEHEFERERIA.

o MIBESR. F—K*KX R WoHABELERE (g0, {id:1-100 M id:101-200) HAHEEF
EIlESR =Y

o HITARE: 51T s (MPLFP2) SEAMMITIEER(E, BMAIT SELECT * FROM R
JOIN S ON R.id = S.id, IB9R R SAMEIRN S #HITEE,

o BREH: ETTRSBERBRFNERLEZL— AT R, ZTREMEERHITLS, R
HELANEIBLER,

o XMIRMBNFATHEERIMD FRKHATHIESERE HF S KFEFFTEIMTRE, B
THRIAF[LEECSH R SRWE, XFALURDT RIERSIEEEH AT IDRE,

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join SELECT * FROM R JOIN S
on local data and then sends to a ON R.id = S.id
coordinator node for coalescing.

| id:1-100 | id:101-200Q

[id:1-100 |

-

GM%LﬁAEE&MWWILEMHHfﬁgf

But if the two tables are partitioned on the same attributesfas'you're trying:tojjoin=

fiREATE
B SUEAE R 15 2 SO Z LR LB R R AR T

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts" ON R.id = S.1id

that table to all nodes.

id:1-100
val:1-50

BERXAnERE TS R EREIELSE D) HRS ﬁDH’J 1L;?T"“
ELT?JZE'JS%EE%F% ’\J:'ri ——E 53\IZE|’J

id:101-20¢

val:51-106

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts" ON R.id = S.id

that table to all nodes.

-
"

-
. ..

stal, R o1 [T —
e I e N i, 7 2 5 R
#EHR, BNRNASHENOREREZELT AT

It may be the case that someone picked, | want to partition on value because most‘of "I

