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databases, transform it in some way to clean things up, toj put Pinto a.uniformes—=
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DcCiSION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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They all pretty much mean the same thing, that you're trying tefextract’ new-knowlee
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STAR SCHEMA
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Snowflake schema
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STAK VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.
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PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id
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TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems
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We're going to talk about the execution models you could h‘ave for a distributed=
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DISTRIiBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS

is roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting




DISTRiIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

== N SES 'Jslﬁ]vl'tu

| 5 o o= .
ibﬂ]ﬂ[]ﬂzxﬂ}lf ’_‘i‘“‘i‘ 1’E1"§Fﬁ EI’J"*SHE‘? |

==

Next question is, for a given query plan, how are we going to getithe data.we:needito=
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PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query
— Bring the data to the node that is executing a query that
needs it for processing.
— This is necessary when there is no compute resources
available where database files are located. .
LN

PUSH QUERY TO DATA

Node 1

P15R.1id:1-100
ﬁ—@ﬂ P1+S.id:1-100

)
AR
Za RIXS
2 IDs [101,200]
P

Application

Server Node ) _
P2»R.1id: 101

SELECT * FROM R JOIN S
ON R.id = S.id

-200

= ° “TEH/J\FE S

MEHE AR 'ﬁﬁmréﬂﬁzumﬁz

So instead of the top node telling the bottom node, send mefal'l the data.you:haves= &



PULL DATA TO QUERY
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OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results
that are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail

during query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution
to allow it to recover if nodes fail.



QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.1id
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QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.id
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QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.
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So doing some kind of micro benchmarking like DB2 does |s'~t-__h1_.g. t’i@ﬁt w.a'y-to-g@.w

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.
— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that
use this approach.
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id
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SELECT * FROM R JOIN S SELECT * FROM R JOIN S SELECT * FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300
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And the idea here is, again, maybe the centralized view doesn~t*have thietcomplete



Umon the output of T FRAGMENTS

each join to produce

l final result. OM R JOIN S
ON\Xid = S.id
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SELECT = FROM R JOIN S SELECT * FROM R JOIN S SELECT = FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300
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And then, again, there'll be some kind of centralized coordmaterthatknows how:sto=—==

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.



DiISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we

discussed earlier in the semester.
— Need to avoid false negatives due to missing tuples when
running local join on each node.
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SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT x FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.
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SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join SELECT * FROM R JOIN S
on local data and then sends to a ON R.id = S.id
coordinator node for coalescing.
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SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts" ON R.id = S.1id

that table to all nodes.

id:1-100
val:1-50
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id:101-20¢

val:51-106

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts" ON R.id = S.id

that table to all nodes.
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