2%, OLTP DB

Bl g E) 117
LAST CLASS
System Architectures

— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized

OLTP VS . OLAP
HITETEI30/50ms A ERVESRINE B KES

OLTP VS. OLAP

On-line Transaction Processing (OLTP):
— Short-lived read/write txns.
— Small footprint.

— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

SRELIPABIESR
DECENTRALIZED COORDINATOR

W Primary Node

| Commit Request I
| Safe to commit? I
Application ".

Server

Partitions

-
+
‘A

X T 1S XE LAY K EHEEE.
So that's the big picture of what we're trying to t@'}?

Bir: ZTET REMAF—1Z3E LRDBMS

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all
nodes agree to commit a txn and then to make

sure it does commit if the DBMS decides it should.
— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?

RRIL: BEREFIEFESEDIY

iMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.
— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).
— This is stupid. The real world doesn't work this way.

TODAY'S AGENDA

Replication

Atomic Commit Protocols
Consistency Issues (CAP / PACELC)
Google Spanner

REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.
— Partitioned vs. Non-Partitioned

— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing

— Update Method

s ip gy iz s AEEN g
£a, ?‘zﬂ},m iﬁﬁ X L6 R AE 32 ¥EE’J§?@§=E%

KEPLICA CONFIGURATIONS

Approach #1: Primary-Replica
— All updates go to a designated primary for each object.
— The primary propagates updates to its replicas without an

atomic commit protocol.

— Read-only txns may be allowed to access replicas.
— If the primary goes down, then hold an election to select

a new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an

atomic commit protocol.

And it's going to be that primary's responsibility to then propagatg those updates to

2. B—F &M

KEFLICA CONFIGURATIONS

Primary-Replica

. Writes
Reads

—_—

"'

.‘
Primary st
Replicas

(wrlte ahead Iog)
And this is typically just sending the write ahead log.

o BEHARLE, SOFEERIE (REWAL)
o BRI LU RIBEERREBZEIRIA EE

i

i

KEPLICA CONFIGURATIONS

Primary-Replica ___ Multi-Primary

| Writes Reads
Reads

Primary

S)dERpN P ERATS N Szl ;
ﬁ'ﬁfﬁi'::z*i?'_ 1 oh [y FR X %G 28 cookle EI’J?S‘ZIEO
TR AT RMFFAEIE, RITANARS LSk EHE
K2 E] BB

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

If the number of replicas goes below this
threshold, then the DBMS halts execution and
takes itself offline.

wi SR\ g SEER S AN EENES (E ,JEEIL\E?E':E:'E-E
fﬂm?ﬁ*ﬁﬁd?ﬁfﬁéﬁ?‘ﬂ&m*ﬁﬁﬁiﬁ ZﬁufmfFZiEE’JHIEE

= R’!‘}m.

(KZi-PE =

FROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

a2 2h) i fa Ea = T B DU GIREIBEAES A
£33 e Y 5B e 1% Bl Bl AR L3R B9 e
So this is how we're going to decide when and how we will propagate the changes frigm
BL (GE—HHE)
FESFFEERHINE NG HITESIRR

Flush?

Approach #1: Synchronous [Commi)

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the

changes. E

FROPAGATION SCHEME
Approach #1: Synchronous [Frusk

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Bl IR E| B2k [BIACK

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

CMU-DB

Propagation Timing
EZZHE: —BFE—1EH, 1LEMfERlog message
R FIESRET ERElog message

FROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it
generates them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.

— Assumes that a txn's log records fits entirely in memory.

BRTRERTNE, TEXMRLESEQITIEEER?

The next is when are the changes actually propagate'ﬂ?-'

Active-Active: ENMEZES T EIRMIIAT, BIFRIEEBHIIKEME
Active-Passive: B 1MNESRERMERFFEEREHME S

ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with
the same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

SO ER DL ActivePath Fies e £ I8 N i s R B#‘P*TL%U-“‘H‘EFT_
— P ETR, EREREERL, RITEMRE, /e

So ActivePath is what I've been sort of describing so far, whereét'ﬁere's some

Atomic Commit Protocol

ATGMIC COMMIT PROTOCOL

Coordinating the commit order of txns across
nodes in a distributed DBMS.

— Commit Order = State Machine
— [t does not matter whether the database's contents are
replicated or partitioned.

Examples:
— Two-Phase Commit (1970s)
— Three-Phase Commit (1983)

— Viewstamped Replication (1988)
— Paxos (1989)

— ZAB (2008?)

— Raft (2013)

£2CMU-DB

Two-Phase Commit
BN EFFRES5FROBINMGEERE, AEHITT—ME

EA—M T RE AT REFEEN RY AR

success
TWO-PHASE COMMIT (SUCCESS)
ﬁ Commit Request 1 ~
o+ I g
ZZa - B
Application §
Server =

[Phasel: Prepare Node 2 ~
Y\

5 ~

8

g —\ =

-~

= OK e

~ i~

=))
S
QO

— B A S i e e B = (SIS

EoEHMNAREFZESERR.

And once you get all of them from the participants, then you're all'ed to go and

TWO-PHASE COMMIT (SUCCESS)

ﬁ Success! -
4—7— S
Iz g
ZZ - 8
Application 3
Server ke
5[:s
- d
L x:3
T S
g =Y
L&
Node 1
=CMU-DBR
abort

YU Elabort, EiZmapplication server[@|Zaborted

TWG-PHASE COMMIT (ABORT)

| Commit Request I .
Application
Server J
[Phasel: Prepare Node 2

Py v ABORT!)

juvdidngavyg

|

pd11140J

Coordinator
'l

i =L I 42 Bh 7 — AN 5 22 28 o 2 2 ol [A A e o
BABRMNETASZENE IR, RIS SERHIL,

immediately we can tell the outside world that our transaction has aborted

Aborted -
B
Application
Server |
Node 2
i (ABORT!|)

Phase2: Abort

juvdidngang

|
|

vd121140

-
L

Coordinator

1Kzl e 2

‘i, B8, RBIVERIXNES0

So even though one node might have said, oh, yeah, | really want t commit

recovery

TWO-PHASE COMMIT

Each node records the inbound/outbound
messages and outcome of each phase in a non-
volatile storage log.

On recovery, examine the log for 2PC messages:
— If local txn in prepared state, contact coordinator.

— If local txn not in prepared, abort it.

— [Iflocal txn was committing and node is the coordinator,

send COMMIT message to nodes.

Failures

AETA: TEAEREHNER, BTEEREAEA

TWO-PHASE COMMIT FAILURES

What happens if coordinator crashes?
— Participants must decide what to do after a timeout.
— System is not available during this time.

What happens if participant crashes?

— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.

2PC Optimizations
—fi K BXearly ack after prepare

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query to a remote node that you know will
be the last one you execute there, then that node will also
return their vote for the prepare phase with the query
result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can
send the client an acknowledgement that their txn was
successful before the commit phase finishes.

Early ACK After Prepare

EARKLY ACKNOWLEDGEMENT

L Success! -
y ——— -
3.
- s
Application 2
Server e

Phasel: Prepare
i OK
§ s
§ 5
~ g
; 3
o

"Node 1

MU-DB

EAKLY ACKNOWLEDGEMENT

ﬁ Success! -
—Z S
2K 3
I -5
Application g
Server e
Phasel: Prepare
el OK s
<
5 ~ 3
S - OK - 3.
: 5
QO

PAXOS
ZEIREERERIAI AL
DI RBINA RN E SRR, B ER B SRKIRE ERFIRES

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

SR AIIED

K
PAXOS i
=
=
S
=
™ ;
Application >
Server -3
3
S
S
g
3
(=¥

. NN ST AT I
 FERNATRINE S

>

-

AR 3

ZZZ E
I
=

Application >

Server -8

=

3

Proposer

ux%mﬁﬁ ?E&mm Eﬁ%&,iﬁﬁ*%@

Node 3Z=# L& [T, AIUERASRINEFNEE

PAXOS ’ .
AR Success! :?:
ZZER 4_9 —
23R Node 2
Eoz o
Application >
Server -8
5
S
g -
S
&
“Node 1
CMU-DB
Time
PAXOS
Proposer Acceptors Proposer
P | —
ropose(n)] = — =
; Agree(n) S i
i ; ; : Propose(n+1)
l Commit(n) l i E i
I [Re)ect(n,n+1)

W

YT

A gree(n+l)

Commit(n+l)

Accept(n+l)

J+4L
]
_.E

PN N ———

Multi-Paxos
MRARFEEE —NRE—USE, T—ERNERNEEREETE, A LIBGLYE Propose FiEk.
L H IR BT R [E] 2 522 R Paxos i

LIS B B EhiBETRYIE), HBEY/E R AR BT RS E S
MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can
skip the Propose phase.

— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known

as a lease) using another Paxos round.
— Nodes must exchange log entries during leader election
to make sure that everyone is up-to-date.

i % il ‘bx‘?—:%ﬁ—‘%%
E’fﬂ, ﬁﬂ% | 'I'-I,.\\E’m WR%E?H #1730 ShEpk

Multi paxosBHFE, MpaxosKBMFE, ERALAURIATE. £5%; BERIENRERS

HEEE, FEXRIURILREE

2¢C VS. PAXOS VS. RAFT

Two-Phase Commit
— Blocks if coordinator fails after the prepare message is
sent, until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive,
provided there is a sufficiently long period without
further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become lead

—

CAP Theorem

DR EIEE RBEMCAPHIEZE RN R4 #E
o CR—EUt

e AZAlways Available

e N&ENetwork Partition Tolerant

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Extended in 2010 (PACELC) to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

U-DB — Consistency

5 (Fall 2023)

Consistency

If Primary says the txn committed,
then it should be immediately visible

AR : AR
o on replicas. T
| \—T "z
R Set A=2 Read A ZZan
Application - Application
Server ACK A=2 Server

If | update A and B at the same time, can | guarantee that I'll see a consistent view, -
Eﬁ -

Availability

AVAILABILITY

AR AR
R R
ZZan ZZ
2 Read A 2
Application | Application
Server Server

Primary Replica | “‘I
SN - /18 A s A s S st =P ST B 0 7516 250
RELTGREN, ﬁ:“[{a‘:iﬂ'rﬁéﬂﬁﬁﬂﬁlﬂ%wtﬂﬁﬁ iM"i :

read the database over there Like I'm you know assuming the networkiit. hasn t been
E‘ e

N

Partition Tolerance

e Splitbrain

MM T RBEN, BIATREEECERETRABTHREENR, AEMITRMERE, W
RIJIANEERETR

NOSQLAERS S KM ZhrAES], RETRERS, BERENRASRESNEFATIER

FARTITION TOLERANCE

AR : AR
2 2
ZZan Set A=2 ' Set A=3 ZZa
Application Application
Server g it Server

Primary

Primary

o A THRconsistency, FHIHAERF

LATENCY VS. CONSISTENCY

—

Application

Server ACK

Replica

Pr|mary

iR JENEIIIN S h e MDA ot #4’1‘21&},&1&
A ARIR— I ERIB R A — B, BRI HRU SIS,

everything's strong and consistent, but I'm gonna wait for that.

FHRBEFEERONE T TR EES eI TEN
NoSQL—ARIER BT BYEH

CAP/PACELC FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Distributed Relational DBMSs

— Stop allowing updates until a majority of nodes are
reconnected.

NoSQL DBMSs

— No multi-node consistency. Last update wins (common).
— Provide client-side API to resolve conflicts after nodes
are reconnected (rare).

S I=Y |3 A |l WA =2 A I R NG [2E 22 27, Aeie e
f£4589, 0 20 tH42 80 A9 DB2. Oracle RACKES)

ones, like the ones from the 1980s, like DB2 and Oracle Rack and othgrs,ftheyiw will

l

L

Google Spanner

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.

Concurrency Control:

— Strict 2PL + MVCC + Multi-Paxos + 2PC

— Externally consistent global write-transactions with
synchronous replication.

— Lock-free read-only transactions.

ol

432 T Spanner RiZ{TMN BRI =pEhnilit .

They built Spanner for running their behemoth ad infra-s-t-rut'ré.

£=CMU-DB

B2 HE—REEBRABERSESHINE, REBBEs SRR ONRFHMGPSEWBRATEMN

SPANNER: CONCURRENCY CONTROL

MV CC + Strict 2PL with Wound-Wait Deadlock
Prevention

DBMS ensures ordering through globally unique
timestamps generated from atomic clocks and GPS
devices.

Database is broken up into tablets (partitions):
— Use Paxos to elect leader in tablet group.
— Use 2PC for txns that span tablets.

o g [S e o R R4
B B 545 B AN R SO MR FE0R] GPS 12 ISR R0 e v

transactions through globally unique timestamps that are gonna be gene#rat'te.d t»hror'__g.‘h_g_,_ﬁ

—NNESFEFMH—Mabletd, FEFEAMMBIRISRIITERIRE, XLEEMBERERIE
flitablet, #HMmEELAE (I eader; leaderi@idpaxos&EiERIFRIEconsistency

SPANNER TABLETS

Tablet B-Z
2PC oo Paxos Groups

Snapshot Reads Writes + Reads _;""Snapshot Reads

Tablet A "N Tablet A NS
Paxos Paxos

Paxos Group

Data Center 1 Data Center 2
Leader

SO —AIREER B SE i EE ES i) el SR
BRFHEY, Eb30 Paxos BiEFIFM ERIZAZ 1S L

. . . 1 . o ‘.‘ 2
So this is a good example where the things aren't mutually exclusive, l:{e_ Paxos ar&g____if

e

gN{eI MR IR A8 BB T I AN BT [BI K A%

SPANNEK: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-
clock" time.

— This is necessary to guarantee strict serializability.

— If T, finishes before T,, then T, should see the result of T,.

Each Paxos group decides in what order
transactions should be committed according to the

timestamps.
— If T, commits at time, and T, starts at time, > time,,
then T,'s timestamp should be less than T,'s.

